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Abstract

A number of methods for using ensemble integrations of prediction models as an int
part of data assimilation have appeared in the atmospheric and oceanic literature. In genera
methods have been derived from the Kalman filter and have been known as ensemble Kalm
ters. A more general class of methods that includes these ensemble Kalman filter methods
derived starting from the nonlinear filtering problem. When working in a joint state / observa
space, many features of ensemble filtering algorithms become easier to derive and compa
ensemble filter methods derived here make a (local) least squares assumption about the re
between the prior distributions of an observation variable and the model state variables. In 
context, the update procedure applied when a new observation becomes available can be
described in two parts. First, an update increment is computed for each prior ensemble estim
the observation variable by applying a scalar ensemble filter. Second, a linear regression o
prior ensemble sample of each state variable on the observation variable is performed. Thi
regression computes update increments for each state variable ensemble member from th
sponding observation variable increments. The regression can be applied globally or locally
Gaussian kernel methods.

Several previously documented ensemble Kalman filter methods, the perturbed obs
tion ensemble Kalman filter and ensemble adjustment (or ensemble square root) Kalman filt
developed in this context. Some new ensemble filters that extend beyond the Kalman filter co
are also discussed. The two part method provides a computationally efficient implementatio
ensemble filters and allows for more straightforward comparison of these methods since th
fer only in the solution of a scalar filtering problem.

1. Introduction

Interest in data assimilation methods using ensemble integrations of prediction mod
growing rapidly in the atmospheric and oceanic communities. This is occurring because me
for doing assimilation with ensembles are rapidly maturing, and because both prediction ce
and research groups are becoming increasingly interested in characterizing more informati
about the probability distribution of the climate system than can be revealed by a single ass
lated state estimate.

Ensemble assimilation methods were originally developed as generalizations of the 
man filter (Kalman and Bucy 1961, Courtier et al 1993). This led to a sequence of related me
known as ensemble Kalman filters (Evensen 1994) which have been extended to increasing
eral assimilation problems (Houtekamer and Mitchell 1998). More recently, other variants, 
referred to as ensemble Kalman filters (Bishop et al 2001, Anderson 2001), have appeared
literature demonstrating improved assimilation error characteristics and/or decreased comp
tional cost. Some of these new methods were developed directly from the probabilistic stat
of the nonlinear filtering problem, rather than by generalizing from the Kalman filter. Develop
filters in this context can lead to a more straightforward understanding of their capabilities f
those not intimately related with the intricacies of the Kalman filter.

Here, a framework is developed in which most ensemble Kalman filter methodologie
documented to date can be described while still supporting a more general class of ensem
ters. The derivation begins with the nonlinear filtering problem and applies a sequence of s
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fying assumptions. The introduction of a joint state / observation space (Tarantola 1987) le
an ability to deal with observations related to the model state variables by non-linear function
least squares assumption (equivalent to assuming a local Gaussian relation amongst the pri
state variables) has been made, sometimes indirectly, in many descriptions of ensemble K
filters. Here, that assumption is made explicitly and a significant simplification in the descrip
of the algorithms results. Under the assumptions made here, the ensemble filter problem s
fies to an application of a nonlinear filter to a scalar, followed by a sequence of linear regress
This simplification makes it easier to analyze the relative capabilities of a variety of ensemb
ter implementations and can lead to reduced computational cost.

Section 2 derives this context for ensemble filtering and section 3 shows how severa
viously documented ensemble Kalman filters are related. Section 4 discusses details of me
for doing scalar assimilation problems. Section 5 briefly discusses the need for limiting the im
of observations on state variables while section 6 offers conclusions.

2. Ensemble Filtering

To simplify notation, this section only discusses what happens at a single time at wh
observations become available. Discussion of how filter assimilations are advanced in time
ensemble methods and prediction models can be found in Anderson (2001) (hereafter A01
Houtekamer and Mitchell (1998), and Jazwinski (1970). Basically, each ensemble member i
grated forward in time independently using a forecast model between times at which observa
are available.

A. Joint state/observation space and Bayesian framework

The joint state/observation space (Tarantola 1987, A01) is defined by the joint space
vector

z = [x, h(x)] = [x, y] (1)
wherex is the model state vector,y = h(x), referred to as observation variables, is the expecte
value of the observations available at this time, andz is a vector of length n + m where n is the
number of state variables and m is the number of observations available at this time. Observ
are assumed to be selected from a distribution with expected value given byh(x) and an associ-
ated observational error distribution.

Using Bayesian statistics as in Jazwinski(1970) and A01, the distribution of the post

(or updated) distributionzu = [xu, yu] can be computed from the prior distribution,zp = [xp, yp], as

p(zu) = p(yo | zp)p(zp) / normalization (2)

whereyo is an m-vector of the observed values available at this time. In the ensemble meth
applied here, the normalization factor in the denominator is not used explicitly (Anderson a
Anderson 1999).

One implication of (2) is that subsets of observations with independent (observation

error) distributions can be assimilated sequentially. Letyo be composed of s subsets of observa

tions, , where the distribution of the observational errors for observatio

in subset i is independent of the distribution for the observations in subset j, for . Then

yo y1
o y2

o … ys
o, , ,{ }=

i j≠
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In particular, if the individual scalar observations in  have mutually independent error dis

tions, they can be assimilated sequentially in any order without changing the result in (2). T
allows sequential assimilation with observational error distributions represented as Gaussia
long as the observational error covariance matrix is diagonal. This was pointed out by Hou
mer and Mitchell (2001) in the ensemble Kalman filter context and used in A01. Eq. (3) dep
only on the observing system and makes no assumptions about the prior joint state distribut
how it is represented.

B. An ensemble method for the filtering problem

In ensemble methods for solving (2), information about the prior distribution of the s

variables,xp, is available as a sample of size N produced by N applications of a prediction mo

An ensemble sample of the prior observation vector,yp, can be created by applying the forward

observation operator,h, to each ensemble sample ofxp.
Some Monte Carlo (ensemble) methods also have a weight, w, associated with each

ensemble member. The possibility of weighted ensembles is not discussed in detail here, b
methods in this section are easily generalized to this case. Attempts to apply the most com
types of weighting / resampling Monte Carlo algorithms in high-dimensional spaces have fa
significant difficulties.

Observational error distributions of climate system observations are generally only po
known and are often specified as Gaussian with zero mean (known instrument bias is usua
rected by removing the bias from the observation during a pre-processing step). Some obs
tions have values restricted to certain ranges, for instance precipitation must be positive.
Redefining the observation variable as the log of the observation can lead to a Gaussian o
tional error distribution in this case (Tarantola 1987). Given Gaussian observational error dis
tions, observations can be decomposed into subsets where observational errors for observa
each subset are correlated but observational errors in different subsets are uncorrelated. In
words,R, the observational error covariance matrix, is block diagonal with each block being
size of the number of observations in the corresponding observation subset. Error distributio
the different subsets are independent, so the subsets can be assimilated sequentially in (2
arbitrary order.

For many commonly assimilated observations, each scalar observation has an error
bution that is independent of all others, allowing each scalar observation to be assimilated s
tially (Houtekamer and Mitchell 2001). If the observational covariance matrix is not strictly
diagonal, a singular value decomposition (SVD) can be performed onR. The prior joint state
ensembles can be projected onto the singular vectors and the assimilation can proceed us
new basis, in whichR’, the observational covariance matrix, is diagonal by definition. Upon co
pletion of the assimilation computation, the updated state vectors can be projected back to
original state space. Given the application of this SVD, a mechanism for sequential assimil
of scalar observations implies no loss of generality for observations with arbitrary Gaussian
distributions. In everything that follows, results are presented only for assimilation of a single

p yo zp( ) p
i 1=

s

∏ yi
o zp( )=

yo
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lar observation so that m = 1, with joint state space size k = n + m = n + 1. Allowing arbitrar
observational error distributions represented as a sum of Gaussians is a straightforward ext
to the methods described below.

C. Two step data assimilation procedure

Following A01, define the joint state space forward operations operator for a single o
vation as the order 1 x k linear operatorH = [0, 0, ..., 0, 1]. The expected value of the observatio
can be calculated by applyingH to the joint state vector,z, which is equivalent to applying the
possibly non-linear operatorh to x. The conversion of the possibly non-linearh to the linearH is
a primary motivation for applying ensemble filters in the joint state space.

The updated probability for themarginal distribution of the observation joint state vari-
able, y, can be formed from eq. (2) with the simple form

. (4)

where the subscript on the probability densities indicates a marginal probability on the obse
tion variable, y. The one dimensional problem for this marginal distribution can be solved b
variety of methods, some of which are discussed in sections 3 and 4. Note that (4) does no
depend on any of the model state variables.

This suggests a partitioning of the assimilation of an observation into two parts. The

determines updated ensemble members for the observation variable y given the observatioo.

To update the ensemble sample of yp, an increment,∆yi, is computed for each ensemble membe

, i = 1, ..., N where N is the ensemble size.

Given increments for the observation variable, the second step computes correspon
increments for each ensemble sample of each state variable,∆xi,j (i indexes the ensemble membe
and j = 1, ..., k indexes which joint state variable throughout this report). This requires assu
tions about the prior relationship between the joint state variables. Although reasonable alt
tives exist (Tarantola 1987), the assumption used here is that the prior distribution is Gaussi
a sum of Gaussians which allows generality). This is equivalent to assuming that a least squa
(local least squares fit) to the prior ensemble members summarizes the relationship betwe
joint state variables.

Figure 1 depicts the simplest example in which there is only a single state variable, x.
observation variable, y, is related to x by the operator h which is nonlinear in the figure. Inc
ments for each ensemble sample of y have been computed. The corresponding increment
are then computed by a global least squares fit (linear regression) so that

. (5)

The change in the ith ensemble sample of the state variable due to observation variable y is
to the prior covariance of x with y,σx,y divided by the prior variance of y,σy,y times the change in
the ith ensemble sample of the observation variable. This is just a statistical linearization an
inversion of the operator h. This linearization can be done globally by computing the global
ple covariance and using this for the regression for each ensemble member (Fig. 1).

The linearization can also be done locally (Fig. 2) by computing local estimates of co
ance for each ensemble member. This can be done, for instance, by only using a set of ne

py y
u( ) p y

o
y

p( ) py y
p( )= norm( )⁄

yi
u

yi
p ∆yi+=

∆xi

σx y,
σy y,
----------∆yi=
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neighbors (in y, in x, or in some combined distance metric) to compute sample covariance. F
2 shows an idealized form of nearest neighbor linearization in which only a single closest e
ble member is used to compute the statistical linearization. Related methods for doing local
sian kernel approximations of this type can be found in Silverman (1986) and Bengtsson (2
When x is functionally related to y as in Fig. 2, local linearization methods like this can give
nificantly enhanced performance when h is strongly non-linear over the prior ensemble rang

If h is nonlinear as in the figures, the statistical linearization is only valid locally. To m
mize errors due to the linearization, whether global or local linearizations are applied, it is d
able that the observation variable increments,∆yi, should be as small as possible. This is
discussed further in section 4C.

This two step method can be extended trivially to problems with arbitrary numbers of s
variables. Least squares fits can be made to compute the increments for each state variablej, j =
1, ..., n, given the increments in the ensemble members for y. When a global linearization i
applied using a least squares fit, a single Gaussian is assumed to approximate the prior rela
the variables. The increments,∆xi,j, for each ensemble sample of each state variable in terms
∆yi can be computed independently by regression:

. (6)

Again, local linearizations could be performed using Gaussian (or extended Gaussian) kern
methods (Tarantola 1987) in which only some subset of local information is used to compu
covariance from the ensemble sample. In (6), all relevant information about the prior covari
of the model state variables,x, needed to compute increments is contained in the correlation of
individual scalar state variables with the observation variable y.

When the state variable being updated and the observation variable are not function
related as is possible in the case of multivariate model state, the use of local linearizations 
more problematic. Figure 3 shows an example where state variable x1 is being updated by an

observation, yo. The expected value of the observation is y = h(x2), where x2 is a second state vari-
able, here moderately correlated with x1. In this case, the linear regression for x1 performs a sta-
tistical linearization in the presence of noise. Using large (global) regressions is useful to filte
this noise. On the other hand, using local linearizations can help to resolve more of the stru
of h. Applying local regressions that are based on too few ensemble members can lead to 
trous over-fitting behavior as demonstrated by the application of an idealized single nearest
bor linearization in Figure 3. Appropriate trade-offs in choosing local versus global linearizat
are an important part of tuning ensemble filters for improved performance.

3. Relation to Ensemble Kalman Filters

A variety of ensemble Kalman filters have been described in the literature (see for e
ple Evensen and van Leeuwen 1996, Keppenne 2000, Mitchell and Houtekamer 2000). Ot
closely related methods for doing assimilation have been described by Lermursaix and Ro
(1999) and Miller et al (1994). This section demonstrates that the two most common of thes
perturbed observations ensemble Kalman filter (EnKF) and the Ensemble Adjustment Kalm
Filter (EAKF) can be recast in the two step framework outlined in the previous section. At th
heart of these ensemble Kalman filters is the fact that the product of the joint prior Gaussian

∆xi j,
σxj y,
σy y,
-----------∆yi=
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meanzp, covarianceΣp and weight w and the Gaussian observation distribution with meanyo and
error varianceR has covariance

, (7)

mean

, (8)

and an associated relative weight

, (9)

as in A01.
The discussion that follows assumes sequential assimilation of scalar observations s

in (7-9),yo is a vector of length 1 andR is a 1x1 matrix. Additional simplifications in computing

the product of Gaussians can then be made easily. The order of the prior joint state covarianΣp,
is k x k where k = n+1. The updated covariance from (7) can be written

(10)

whereσk,k is the prior observation variable error variance (the kth diagonal element ofΣp), r is the

observation error variance (the only element of the 1x1 matrixR) and is the matrix consisting

of Σp with all elements except those in the last column set to 0. The last column is the prior
riance of each joint state variable with the observation variable. The change in the covarianc
to the assimilation of a single observation is then

. (11)

Substituting (10) into the expression for the updated mean from (8) gives

. (12)

Noting that  and , this becomes

. (13)

An equation for the change in the mean due to assimilating the observation is

(14)

where the single element of the vectoryo is yo and  is the prior mean value of the observation

variable.
Finally, in this case the weight D from (9) (a scalar) depends only on the observation

the observation variable and simplifies to

. (15)

Σu Σp( )
1–

H TR 1– H+[ ]
1–

=

zu Σu Σp( ) 1– zp H TR 1– yo
+[ ]=

D zp( )T Σp( ) 1– zp yo( )TR 1– yo zu( )T Σu( ) 1– zu
–+[ ] 2⁄–{ }wexp=

Σu I r σk k,+( ) 1– Σ0k
p

–[ ]Σp
=

Σ0k
p

∆Σ Σu Σp
– r σk k,+( ) 1–

– Σ0k
p Σp

= =

zu I r σk k,+( ) 1– Σ0k
p

–[ ]Σp Σp( )
1–
zp HTR 1– yo

+[ ]=

ΣpHTR 1– yo Σ0k
p HTR 1– yo

= Σ0k
p Σ0k

p σk k, Σ0k
p

=

zu I r σk k,+( ) 1– Σ0k
p

–[ ]zp
r

1– I r σk k,+( ) 1– σk k,–[ ]Σ0k
p HT yo

+=

∆z zu zp
– r σk k,+( ) 1– Σ0k

p HT yo zp
–( ) r σk k,+( ) 1–

y
o

zk
p

–( ) σ1 k, σ2 k, … σk k,, , ,[ ]T
= = =

zk
p

D y
o

zk
p

–( )–
2

2 r σk k,+( )⁄
 
 
 

wexp=
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It is easily verified that computing the impact of the observation on each state variab
independently in (11), (14) and (15) is equivalent to computing the impact on all state variab
once. This was pointed out, but not rigorously derived in A01 where assimilations were per
formed by looking at the impact of an observation on each state variable in turn.

A. Perturbed Observations Ensemble Kalman Filter

In its traditional implementation, the perturbed observation ensemble Kalman filter
(Houtekamer and Mitchell 1998) (EnKF) uses a random number generator to sample the ob
tional error distribution (specified as part of the observing system) and adds these samples

observation,yo, to form an ensemble sample of the observation distribution, , i = 1, ... ,N. 

most implementations (Houtekamer and Mitchell 1998), the mean of the perturbations is adj

to be 0 so that the perturbed observations have meanyo; other clever methods for perturbing the
observations can preserve other aspects of the distribution (Pham 2001) (the discussion be
applies whether adjustment to the means or other types of perturbation algorithms are app

not).Σp is computed using sample statistics from the prior joint state ensemble and (7) is co

puted once to find the value ofΣu. Eq. (8) is then applied N times withzp replaced with andyo

replaced byyo
i in the ith application to compute N ensemble members forzu. This method is

described using more traditional Kalman filter terminology in Houtekamer and Mitchell (199
As shown in Burgers et al (1998), computing a random sample of the product as the produ
random samples is a valid Monte Carlo approximation to the nonlinear filtering equation (2).
that all ensemble members are assumed equally weighted in both the EnKF and EAKF so th
is not used, however, (9) may be relevant for other ensemble filtering methods (see section

An equivalent two step procedure for the EnKF begins by computing the update incr
ments for the observation variable, y, which can be done as a scalar problem independent 
other joint state variables as indicated by (4). Perturbed observations are generated as abo
(7) is used to compute an updated variance for the observation variable; all matrices here are

1x1 so inverses are simply reciprocals. Eq. (8) is evaluated N times to compute yu
i, with zp andyo

replaced by ypi and yoi, where the subscript refers to the value of the ith ensemble member.
Equation (14) applies in this case, since the updated covariance in the full dimensio

EnKF is computed by (7), and can be used to compute the increments for all other state va

given the value of∆yi = yu
i - y

p
i (which is by definition the kth component of the k-vector∆zi).

All components of∆zi can be computed from (14) as

. (16)

where the first subscript on∆z indexes which ensemble member and the second indexes whi
state variable. This is the regression formula (6) presented in section 2C derived from the as
tion of a Gaussian relation between the prior state variables. Implementing the EnKF in this
step fashion gives results identical (to computational round-off) to previous implementation
the EnKF but at reduced computational cost.

B. Ensemble Adjustment Kalman Filter / Square Root Filter

yi
o

zi
p

∆zi j,
σ j k,
σk k,
----------∆yi=
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A01, Bishop et al (2001), and Hamill and Whitaker (2001) have all described anothe
ensemble filtering method, referred to as the Ensemble Adjustment Kalman Filter (EAKF) b
A01. Tippett (personal communication, 2001) providing an analysis of the work of these diffe
authors, points out that the methods are roughly equivalent, and suggests that the name sq
root filter (Andrews 1968) may be more appropriate.

The EAKF constructs an updated ensemble with a mean and sample variance that e
satisfy (7) and (8). In A01 this is done by shifting the mean of the ensemble and then adjustin
spread of the ensemble around the updated mean using a linear operator,

(17)

where A is a linear operator that satisfiesΣu = AΣpAT.

The EAKF can be recast in the two step framework developed in section 2. Again, (4
implies that the observation variable y can be updated independently of the other joint state
ables. Recalling that y is the kth element of the k-dimensional joint state vector, the update
ance for y can be written

(18)

using a scalar application of (7). Applying a scalar version of (8) to compute the updated m

yu, the updated value of y can be written

(19)

where

.

For the change in the mean values, ,equation (14) holds for the EAKF and this
implies that (16) can be used to compute the changes in the state variables by regression fr
change in the mean for y.

It can also be shown that the regression formula can be applied for the adjustment o
ensemble members around the mean in the EAKF. Eq. (10) can be rewritten by taking the 
root of the operator as

(20)
where

(21)

and

. (22)

If the deviation of the observation variable around the mean is updated as in (19), app
the linear regression (16) for state variable j gives

zi
u A zi

p zp
–( ) zu

+=

σk k,
u σk k,

p( )
1–

r
1–

+[ ]
1–

=

yi
u α yi

p
y

p
–( ) y

u
+=

α σk k,
u σk k,

p( )
1–

[ ]
1 2⁄

r r σk k,
p

+( )
1–

[ ]
1 2⁄

= =

∆z zu zp
–=

Σu
BΣp

B
T

=

B I βΣ0k
p

+( )=

β σk k,
p( )

1–
r r σk k,

p
+( )

1–
1–=
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Then,

(25)

where

. (26)

Writing this in vector form for the updates of all joint state variables gives

(27)

where

. (28)

The matrix A used in the regression update is identical to B in (22) demonstrating that usin
regression in the two step framework is identical to the implementation of the EAKF describe
A01.

In summary, the EnKF and EAKF assume a Gaussian relation between the variables
joint state space prior distribution. However, these methods do not use (7) and (8) directly to
pute an updated distribution. Both methods can be recast in terms of the two step assimila
context developed in section 2C. First, update increments are computed for each ensemble
of the observation variable using scalar versions of the traditional algorithms. Once incremen
ensemble samples of the observation variable have been computed, (16) is used to solve f
increments,∆zj,i, for each state variable in turn in terms of∆yi by linear regression.

There are a number of implications about the computational complexity of ensemble
man) filtering that can be drawn from (16). First, there is no need to compute the prior covari
among the model state variables (only the prior cross covariance of each state variable wit
observation variable is needed, along with the variance of the observation variable) or the c

plete updated covariance,Σu, (only the updated variance of the observation variable is needed
Second, once the observational variables are updated, the increments for the state variable
depend only on ratios of prior (co)variances. Any multiplication of the prior covariance matrix
some type of covariance inflation factor as is done in many existing ensemble Kalman filter
implementations (Anderson and Anderson 1999, Whitaker and Hamill 2001) does not impac
solution to (16). The impacts of covariance inflation are still felt in the first step in which the
increments of the observational variable are computed. Note that many types of covariance
tion directly increase the spread of the joint prior distribution.

C. Degenerate prior covariance

A potential complication occurs ifΣp is degenerate so that its inverse is not defined. The

are several reasons whyΣp might be degenerate. First, it is possible that the joint state vector is
order greater than the size of the space that it spans. The most obvious instance occurs w
observation is a linear function of the prior model state variables (for instance if a state varia

∆zi j, σ j k, σk k,( ) 1– ∆yi σ j k, σk k,( ) 1– α 1–( )yi
p

= =

zi j,
u

zi j,
p σ j k,

p Γyi
p

+=

Γ σk k,
p( )

1–
α 1–( ) σk k,

p( )
1–

r r σk k,
p

+( )
1–

1–= =

zi
u A zi

p zp
–( )=

A I ΓΣ0k
p

+=
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observed directly). Second, details of the sample statistics of the prior ensemble could lead

degeneracy. For instance, if the ensemble is smaller than the size of the joint state spaceΣp com-
puted from the sample statistics must be degenerate. Third, details of the prediction model
lead to states that are confined to some sub-manifold of the model state space.

The two-step procedures for the EnKF and EAKF continue to be equivalent to the tr

tional implementations even ifΣp is degenerate. In this case, (7) through (9) must be modified

replace the inverses with pseudo-inverses. LetUT be anη x k orthogonal matrix whose rows are

the set of left singular vectors ofΣp corresponding to non-zero singular values (η is the rank of

Σp). ApplyingUT to a vector in the original space gives the projection of that vector on the ra

of Σp. The projection of the covariance on this space isUTΣpU. The probability density of the
prior distribution outside of this subspace is zero, so the updated distribution and hence∆z must
lie in this subspace. Note that by definition of the SVD, the projection of the covariance on 

range ofΣp projected back into the original space isUUTΣpUUT = Σp.

Next, define anη x η orthogonal matrixBT that performs a change of basis in the reduce

SVD subspace. Let theη x k matrixCT = BTUT be defined so that the last row ofCT is the projec-

tion of the observation variable,zk = y, on the range ofΣp; the last column ofCT is [0, 0, ...0,ψ]T.

CT exists as long as the observation vector does not lie in the null space ofΣp, but this must be the
case for (2) to have a relevant solution. If the observation vector did lie entirely in the null s

thenp(y0 | zp) would be 0 with probability 1 and the result of (2) would be a delta function in
cating a deterministic solution (and probably an improperly defined problem, Tarantola (198

Within the subspace with the basis given by the rows ofCT, the projection of the
prior covariance has an inverse and (7) through (9) can be applied. The results can then be
jected back to the original space:

. (29)

In this subspace, defineΣ’ u = CTΣuC, Σ’ p = CTΣpC, z’ i = CTzi (anη-vector), y’i = ψyi is the last

element of z’i, and is the prior variance of y’i. Also note thatCTHTR-1HC is aη

x η matrix with all elements 0 except the last column of the last row which is r’-1 = ψ2r-1. Finally,

defineR’ -1 as the 1 x 1 matrix with only element r’-1 andH’ as theη-vector [0, 0, ..., 0, 1].
In the subspace, (10) through (16) hold for the primed quantities just defined. In partic

(16) in vector form gives

. (30)

Converting this back to the original subspace gives

. (31)

Using the fact thatCTC = I,

,(32)

which is a vector form of (16).

Σu C CTΣp
C( )

1–
CTHTR 1–

HC+[ ]
1–
C

T
=

σ'η η,
p ψ2σk k,

p
=

∆z'i σ'η η,
p( )

1–
Σ'

p
0 0 … 0 ∆y'i, , ,,[ ]T

=

∆zi C∆z'i σ'η η,
p( )

1–
CΣ'

p
0 0 … 0 ψ∆yi, , ,,[ ]T

= =

∆zi ψ 2– σk k,
p( )

1–
CΣ'

pCTC 0 0 … 0 ψ∆yi, , ,,[ ]T σk k,
p( )

1–
Σp

0 0 … 0 ∆yi, , ,,[ ]T
= =
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This demonstrates that doing the two step procedure in the original space, even ifΣp is degener-
ate, gives results corresponding to those given by the previously documented versions of th
EnKF and EAKF.

4. Additional Methods for updating the observational variable ensembles

Section 2 developed a framework in which state variables in ensemble filters can be
updated once increments to the observational variables have been computed. Section 3 de
strated that the EnKF and EAKF could be formulated in this framework. In this section, som
additional methods for updating the observational variable are discussed. Independence o
vational errors continues to be assumed throughout this section so that observations can b
cessed sequentially. Once update increments for the observation variable are computed by
the following methods, the rest of the joint state variables can be updated by linear regress
using (16).

A. A kernel filter

If the prior distribution of the observation variable may have significant non-Gaussian structu
kernel method similar to the one employed in Anderson and Anderson (1999) may be usef
computing the update increments. One simple example of kernel methods is the Fukunaga m
(Silverman 1986) applied in one dimension. In this algorithm, the prior distribution is represe
as a sum of Gaussians with identical variance but different means. The means are the indi
prior ensemble samples and the variance is the prior sample variance multiplied by a scalin
tor, η. The prior distribution is then

where N(a, b) is a Gaussian with mean a and variance b.
The product of a prior expressed as a sum of Gaussians and a Gaussian observatio

tribution is equal to the sum of the products of the individual prior Gaussians and the obser
tional Gaussian. The variance of all Gaussians summed in the product is identical in this cas
can be computed by a single scalar application of (7). The means will all be different and c
computed by N scalar applications of (12). In the most naive application of this method, an
updated ensemble can be generated from this continuous representation by randomly sam
the sum of Gaussians as in Anderson and Anderson (1999).

This kernel method can be extended in a number of ways by allowing more general 
nels. For instance, kernels with different means and different variances can be used followi
variety of techniques like the class of nearest neighbor methods (Silverman 1986, Bengtss
2001). In addition, kernels from the class of ‘generalized’ Gaussians as described in Taran
(1987) can lead to a variety of related kernel algorithms.

B. Quadrature product methods

Update methods that are based directly on ‘quadrature’ solutions to (4) can also be us
find increments for observation variables. One implementation of such a method could beg
computing a continuous approximation to the prior distribution from the ensemble sample; a

p y
p( ) N yi

p ηΣp,( )
i 1=

N

∑=
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kernel methods are an example. Quadrature methods can then be used to divide the real lin
set of intervals over which the product in the numerator of (4) is computed to approximate t
updated distribution. An appropriate method can then be used to sample this updated distr
to generate new ensemble methods.

C. General requirements for an observation variable update

Several characteristics may be important for algorithms used to update the observat
variables. First, low quality observations should have small impacts on the ensemble. For a
spheric and oceanic models, the prior distributions may be sampling model ‘attractors’ that h
great deal of structure. Allowing low impact observations to change the ensembles has poten
destroy valuable information. Pure resampling algorithms would be an example of an undes
method. In this case, the prior ensemble would be converted to a continuous representation
would then be only subtly modified by a low information observation. This updated continuo
distribution would then be resampled to generate an ensemble, leading to possibly large in
ments to ensemble members. The ensemble kernel filter as described above suffers from th
ciency and generally produces assimilations with larger ensemble mean error than do the E
and EAKF. This is despite the fact that in many instances it produces more accurate sampl
the updated observation variable distribution when the prior is significantly non-Gaussian. M
fications to the kernel filter that limit the impact of low information observations are required
make this method more generally useful.

For related reasons, it is desirable to limit the size of the increments for observation
ables as noted in section 2. Since the regression used to update the state variables is a sta
linearization, it is likely to be an increasingly poor approximation as the increments increase
instance, the updated mean and covariance of the observation variable for the EnKF would

same if the pairing between the updated, , and prior, , observational variable ensemble

bers was changed before the computation of update increments, . In some applications

performance of the EnKF can be dramatically improved by pairing the updated observation
variable ensemble members with the prior members in order to reduce the value of the upd
increments. The most obvious way to do this is to sort the prior and updated observational 
able ensemble members and to associate the nth sorted updated ensemble member with t
sorted prior ensemble member. Doing this reduces much of the difference between the EnK
EAKF reported in A01. Doing ordered pairing also significantly improves the performance of
nel filter algorithms (section 4A) by reducing the size of increments.

5. Limiting the impact of observations

Section (2C) has shown an efficient method for allowing an observation to impact ind
ual state variables in an ensemble filter. The appropriate solution might appear to be allowing
observation to impact each state variable. However, when the size of affordable ensembles
small, or when N is small compared to the number of observations or the number of state v
ables, there are several good reasons to limit the impact of an observation on some state va

One reason for limiting the impact of observations is simply to reduce computational c
By limiting the impact of an individual observation to a subset of state variables with which 

zk
u

zk
p

∆zk
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expected to be closely related, the number of cross covariance terms that need to be compu
be greatly reduced.

Hamill et al (2001) have discussed related problems that occur when spuriously large
correlation magnitudes between an observation variable and state variable occur due to sa
errors. They point out that if there are a large number of observations that are expected to 
weakly correlated with a state variable, the impact of spurious correlations may mask the im
of a smaller set of observations with relatively large expected correlation magnitude. This is
ticularly problematic if the number of observations is large and the ensemble size is small. H
et al develop their discussion in a context where there is a natural definition of distance (ph
distance in their case) between observations and state variables and suggest reducing the
of physically distant observations on a state variable by reducing the sample correlation cro
covariance between observations and state variables as the distance between them increase
results also suggest that it may be difficult to apply ensemble filters with small sample size
systems where a state variable is expected to be weakly related to a large number of observ
but strongly related to no observations. For instance, in the case of models of a fluid on the s
if the state variables are some sort of basis functions with global support, and observations a
marily of some quantity at a point, one might expect difficulties with spurious correlations fo
small ensembles.

A final reason for limiting the impact of observations is applicable when the computa
ally affordable ensemble size is small compared to the number of state variables. As pointe

in section 3C, in such cases the prior covariance matrix,Σp, is singular and the increment in the

model state will be confined to the range ofΣp. If the prior state estimate has errors that projec

onto the null space ofΣp, these cannot be corrected. This problem can be addressed by allow
different weighted subsets of observations to impact different state variables. The result is th
size of the subspace of the state space over which possible updates occur can be greatly inc
if each state variable sees a different weighted subset of observations, the space spanned
possible updates may be the complete state space.

This becomes an even more serious problem in atmospheric and oceanic data assim
when the assimilating model is imperfect, especially when observations of the physical syste
being assimilated for prediction purposes. In such cases, the assimilating model may evolv
sub-manifold of the state space in a fashion that is not consistent with the physical system 
which observations are being taken.

Methods for reducing the impact of observations as a function of distance have been
in a variety of data assimilation methods (Gaspari and Cohn 1999) including ensemble filte
(Houtekamer and Mitchell 2001, Hamill et al 2001). These studies have indicated the import
of smoothly reducing the influence of observations as a function of (physical) distance to av
having large differences in the impact of a set of observations on pairs of state variables th
closely related in the prior distribution. Gaspari and Cohn (1999) develop a number of func
with compact support that can be used to reduce the cross covariance of prior state and ob
tion variables in ensemble filters. The compact support of these functions leads to computa
efficiency since observations beyond a certain distance do not impact a given state variable

Houtekamer and Mitchell (2001) applied distance dependent covariances in a type o
ensemble filter. In the context developed here, their use of the Schur product can be replace
multiplication of the prior joint covariance by a function of the position of the observation an
Last Modified November 13, 2001 11:05 am
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state variable. Identical results can be obtained in the two step context developed here at a
reduced cost.

6. Conclusions

A local least squares framework for ensemble filtering has been derived leading to a two-st
ensemble filtering update procedure when a new observation becomes available. The first 
to compute update increments for each ensemble member to a prior estimate of the value 
observation. This can be done using a variety of algorithms including the perturbed observ
ensemble Kalman filter and the ensemble adjustment Kalman filter. Other update methods
instance a kernel filter, extend beyond the Kalman filter context and can be referred to mor
erally as ensemble filters.

The second step is to compute increments for each ensemble member of the prior es
for each state variable in turn. This is done by using the prior ensemble sample to do a line
regression of each state variable in turn on the observation variable. The increments for a g
state variable are computed by multiplying the corresponding observation variable increme
the prior covariance of the state and observation variable and dividing by the prior variance o
observation variable.

Deriving a class of ensemble filters in this two step context has a number of advanta
First, it is computationally more efficient than previous descriptions of ensemble Kalman filt
algorithms in the literature. The cost is expected to be dominated by the computation of the
sample cross covariance of the observation and state variables and the variance of the obse
variables. A second advantage is that much more elaborate and expensive ensemble upda
ods can be applied because they need only be applied in a scalar fashion to the observatio
ables. A final advantage is that it is easier to understand differences between various filteri
algorithms. Differences need only be explored in a scalar context making the relative featu
for instance, the EnKF and EAKF much easier to understand.

By lowering the cost and opening up a variety of new filter update algorithms, it is ho
that this local least squares framework can accelerate the development of ensemble filterin
rithms that are best suited for applications such as numerical weather prediction and ocean
estimation.

Acknowledgements: The author is grateful to Chris Snyder, Jim Hansen, Jeff Whitaker, Tom
Hamill, Joe Tribbia and Ron Errico for ongoing discussions of ensemble filtering methods. 
cial thanks are due to Stephen Anderson whose insight led the author to the methods deve
here.

Figure Captions

1. An idealized representation showing the relation between update increments for a state 
able, x, and an observation variable, y, for a five member ensemble represented by asteris

projection of the ensemble on the x and y axes is represented by ‘+’ and the observation, yo is rep-
resented by ‘x’. In this case, y is functionally related to x by h. The grey dashed line shows
bal least squares fit to the ensemble members. Update increments for ensemble members
for y are shown along with corresponding increments for the ensemble as a whole (thin vec
parallel to least squares fit) and for the x ensemble.
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2. As in Figure 1 but showing the application of local least squares fits, in this case using onl
nearest neighbor in y, to compute the updates for x given the updates for y. The local upda
the first and fourth ensemble members are shown by the black vectors.

3.As in Figure 1, but now y = h(x2), where x2 is a second state variable that is moderately corr
lated with x1. The thin dashed vector demonstrates the hazard of using local least squares 
when the observation variable y and the state variable x1 are not functionally related.
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1. An idealized representation showing the relation between update increments for a state 
able, x, and an observation variable, y, for a five member ensemble represented by asteris

projection of the ensemble on the x and y axes is represented by ‘+’ and the observation, yo is rep-
resented by ‘x’. In this case, y is functionally related to x by h. The grey dashed line shows
bal least squares fit to the ensemble members. Update increments for ensemble members
for y are shown along with corresponding increments for the ensemble as a whole (thin vec
parallel to least squares fit) and for the x ensemble.
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2. As in Figure 1 but showing the application of local least squares fits, in this case using onl
nearest neighbor in y, to compute the updates for x given the updates for y. The local upda
the first and fourth ensemble members are shown by the black vectors.
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3. As in Figure 1, but now y = h(x2), where x2 is a second state variable that is moderately cor
lated with x1. The thin dashed vector demonstrates the hazard of using local least squares 
when the observation variable y and the state variable x1 are not functionally related.
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